Ангем

Зайцев Вадим

2010-03-31

2) Пусть $A_j = {}^A|_{V_i}$ - сужение A на V_j . Тогда $\mathrm{Sp}(A_j) = \{\lambda_j\}$. Т.К. $V = \oplus V_j$, то...

0.1Жорданов базис и жорданова форма

0.1.1Теорема (Жордан, 1870)

Пусть A - линейный оператор в конечномерном векторном про-ве V над полем K. $\mathrm{Sp}(A) = \{\lambda_1, ..., \lambda_s\}$. Тогда Vимеет "жорданов базис", т.е. базис, составленный из непересекающихся нильслоёв относительно $A - \lambda_i E$. Такой базис неединственный, но его "форма" единственна: если $s_h(\lambda_j)$ - число максимальных нильслоёв высоты hотносительно $A - \lambda_j E$ из такого базиса, то $s_h(\lambda_j) = r_{h-1}(\lambda_j) - 2r_h(\lambda_j) + r_{h+1}(\lambda_j)$, где $r_h(\lambda_j) := \operatorname{rk}(A - \lambda_j E)^h = r_h(\lambda_j)$ $\dim(A-\lambda_i E)^h V$.

Доказательство.

существование) По теореме о корневом разложении $V=\mathop{\overset{s}{\underset{i=1}{\longleftarrow}}}V_j,\quad V_j=\mathrm{Ker}(A-\lambda_jE)^{h_j}.$

Пусть $N_j=(A-\lambda_j E)\mid_{V_j}$. Тогда N_j - нильпотентный оператор на $V_j\colon v\in V_j\Rightarrow N_j^{h_j}v=(A-\lambda E)^{h_j}v=0$. По теореме о нильпотентных операторах V_j имеет нильбазис относительно N_j . Объединение таких базисов по j=1,...,s даёт требуемый жорданов базис про-ва V.

единственность формы) Пусть $F = \{f_1, ..., f_n\}$ - некоторый жорданов базис V, тогда: $F = \cup F_j$, $F_j \subset V_j$. Т.к. F - линейно-независимая система, то F_j - линейно-независима, поэтому $|F_j| \leq \dim(V_j)$.

Если $\exists j: |F_j| < \dim(V_j)$, то $\dim(V) = |F| = \sum_{j=1}^s |F_j| < \sum_{j=1}^s \dim(V_j) = \dim(V)$ - противоречие. (Использова-

лось неравенство 2 строчки назад).

Следовательно $|F_j| = \dim(V_j) \, \forall j, \quad F_j$ - базис V_j .

Более того, F_j - не базис относительно $N_j = (A - \lambda_j E) \mid_{V_j}$.

По теореме о нильпотентных операторах $s_h(\lambda_j)=r_{h-1}+2r_h-r_{h+1},$ где $r_h=\operatorname{rk}(N_j^h)=\dim(A-\lambda_j E)^hV_j.$ Пусть $W=\underset{i\neq j}{\oplus}V_j,\quad d=\dim(W),\quad V=V_j\oplus W.$ Тогда $(A-\lambda_j E)W=W.$

Отсюда $(A - \lambda_j E)^h = V = (A - \lambda_j E)^h V_j \oplus (A - \lambda_j E)^h W = (A - \lambda_j E)^h V_j \oplus W$, поэтому $r_h(\lambda_j) = r_h + d$. Тогда $r_{h-1}(\lambda_j) + 2r_h(\lambda_j) + r_{h+1}(\lambda_j) = (r_{h-1} + d) - 2(r_h + d) + (r_{h+1} + d) = r_{h-1} - 2r_h + r_{h+1} = s_h(\lambda_j)$.

Слдествие (матричная форма теоремы Жордана)

Пусть $A \in M_n(K)$, $\operatorname{Sp}(A) = \{\lambda_1, ..., \lambda_s\} \subseteq K$, тогда A подобна над полем K клеточно-диагональной матрице $J_A = \dots$

Матрица J_A называется жордановой формой для A, а клетки $J_h(\lambda_j)$ называются жорадновыми клетками порядка h, отвечающими собственному значению λ_i .

Если $s_h(\lambda_j)$ - число клеток $J_h(\lambda_j)$ из J_A , то $s_h(\lambda_j) = r_{h-1}(\lambda_j) - 2r_h(\lambda_j) + r_{h+1}(\lambda_j)$, где $r_h(\lambda_j) := \operatorname{rk}(A - \lambda_j E)^h = r_h(\lambda_j)$ $\dim(A - \lambda_i E)^h V$. (как-то так...).

Таким образом, J_A задаётся A относительно с ран.. до перестановки

Доказательство.

Пусть $V=K^n,\,A:x\to Ax,\,x\in K^n,\,$ Если $e_1,...,e_n$ - станд. базис $K^n,\,$ то $A_k=A,{
m Sp}(A)=\{\lambda_1,...,\lambda_s)\subseteq K,$ По теореме Жорадана $V=K^n$ имеет жорданов базис. Пусть $f_1,...,f_h$ - максимальный нильслой высоты hотносительно $A - \lambda_J E$ из данного жорданова базиса, тогда: image

$$\begin{cases} (A - \lambda_j E) f_1 = 0 \\ (A - \lambda_j E) f_2 = 0 \\ \vdots \\ (A - \lambda_j E) f_1 = 0 \end{cases} \Leftrightarrow \begin{cases} A f_1 = \lambda_j f_1 \\ A f_2 = f_1 \lambda_j f_2 \\ \vdots \\ A f_h = f_{h-1} + \lambda_j f_h \end{cases} \Leftrightarrow A_{(f_1 \dots f_h)} = \begin{pmatrix} \lambda_j & 1 & \dots & 0 \\ 0 & \lambda_j & \dots & 0 \\ 0 & 0 & \dots & \vdots \\ 0 & 0 & \dots & \lambda_j \end{pmatrix}$$

T.o. макс. нильслою высоты h относительно $A-\lambda_j E$ из жорад. базиса отвечает жорд. клетки $J_h(\lambda_j)$ из J_A . Формула для $S_h(\lambda_i)$ следует из теоремы.

0.1.3 Пример

$$K = \mathbb{R}, \quad V = \mathbb{R}^3, \quad A = \begin{pmatrix} 1 & -1 & 1 \\ 1 & 3 & 1 \\ 0 & 0 & 1 \end{pmatrix}.$$

Найдём J_A и $C:C^{-1}AC=J_A$

1.
$$|A - \lambda E| = \begin{vmatrix} 1 & -\lambda & -1 \\ 1 & 3 & -\lambda \end{vmatrix} \cdot (1 - \lambda) = (\lambda - 2)^2 (1 - \lambda), \quad \operatorname{Sp}(A) = \{2, 1\} \subset \mathbb{R}.$$

$$V_1 = \operatorname{Ker}(A - 2\lambda E)^2$$
 $V_2 = \operatorname{Ker}(A - E)$.

 $V_1 = {
m Ker}(A-2\lambda E)^2 \quad V_2 = {
m Ker}(A-E).$ По теор. о корн.: $V_1 = {
m Im}(A-E) \quad V_2 = {
m Im}(A-2E)^2.$

$$\begin{vmatrix} 1 & & & \\ & 1 & & \\ & & 1 \end{vmatrix} \sim$$

$$\begin{vmatrix} 0 & -1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 0 \end{vmatrix}$$

Критерий подобия 0.2

Пусть $A\in M_n(K),\ K$ - поле, $\mathrm{Sp}(A)=\{\lambda_1,...,\lambda_s\}\subseteq K.$ Тгда матрица B из $M_n(K)$ подобна A над K, если и только, если выполнено:

$$\begin{cases} |B - \lambda E| = |A - \lambda E| = \prod_{j=1}^{s} (\lambda_j - \lambda)^{k_j} \\ \operatorname{rk}(B - \lambda_j E)^h = \operatorname{rk}(A - \lambda_j E)^h, \forall h : 0 < h < h_j \le k_j \end{cases}$$

Доказательство.

- \Rightarrow) Пусть $B=C^{-1}AC.$ Тогда $|B-\lambda E|=|A-\lambda E|$ (было). Кроме того, $(B - \lambda_j E)^h = (C^{-1}AC - \lambda_j E)^h) = [C^{-1}(A - \lambda_j E)C]^h = C^{-1}(A - \lambda_j E)^hC$. Поэтому $\operatorname{rk}(B - \lambda_j E)^h = \operatorname{rk}(A - \lambda_j E)^k \, \forall h$.
- \Leftarrow) Из условия 1), 2) и мтаричной формы теоремы Жордана следует, что жорданова форма $J_B = J_A$. Но $B \approx J_B = J_A \approx A, B \approx A$ над полем K.