Ангем

Зайцев Вадим

2010-03-31

Ряды от матриц

ПУсть $K = \mathbb{R}$ или \mathbb{C} .

0.1.1Определение

Форм. степенной ряд относительно над K - это выражение $f(\lambda) = \sum_{k=0}^{n} nfty a_k \lambda^k$, $a_k \in K$

Его форм. приож над - это ряд $sum_{k=1}^i nftyka_k\lambda^{k-1}$ Многочлен $f_n(\lambda):=sum_{k=0}^N a_k\lambda^k$ называется N-й частичной суммой ряда $f(\lambda)$.

Пусть A_0, A_1, \dots - послед. матриц из $M_n(K)$. Матрица L называется пределом послед. A_0, \dots если $L_{ij} = \lim_{N \to \infty} (A_N)_{ij}$, $\forall i$

Ряд $f(\lambda)$ сходится на матрице $A \in M_n(K)$, если существует $\lim_{N\to\infty} f_N(A)$.

0.1.2 Теорема

Ряд $f(\lambda)$ сходится на матрице A из $M_n(K)$, $K=\mathbb{R}$ или \mathbb{C} , тогда и только тогда, когда $f(\lambda)$ и его производные до порядка $h(\lambda_i)$ сходятся в точках $\lambda_i \in \operatorname{Sp}(A) = \{\lambda_1, ..., \lambda_s\}$. Здесь $h(\lambda_i) = h_i$ - макс. размер клетки Жордана $J_h(\lambda_i)$ из J_A .

0.1.3Лемма

Если $\exists lim_{n\to\infty}A_N$, $\lim_{n\to\infty}B_N$, то пределы $\lim_{N\to\infty}(A_N+B_N)=$ сумма пределов. с произведением аналогично.

Доказательство. Очевидно. Опирается на сво-ва пределов суммы и произведения последовательности чисел.

Доказательство. Пусть $J = C^{-1}AC$ - жорданова форма мтарица A. Тогда

Если
$$j=\begin{pmatrix} j_1 & \dots & 0 \\ 0 & . & 0 \\ 0 & \dots & J_k \end{pmatrix}$$
 , J_k - жорданова клетка, то $f_N(J)=\dots$ и

 $\exists \lim f_N(J) \Leftrightarrow \exists \lim f_N(J_k) \forall k$

Если $J_k = J_h(\lambda_i)$, то получается большааая хрень.

и $\exists \lim f_N(J_K) \Leftrightarrow \exists \lim_{N \to \infty} f_N^{(j)}$ при $< h \le h_j, \, \forall \lambda_i \in \operatorname{Sp}(A)$.

Равносильно: ряд $f(\lambda)$ и его производные до порядка h_{i-1} сходится в точках $\lambda_j \in \operatorname{Sp}(A)$.

0.1.4 Следствие

Для любой матрица из $M_n(\mathbb{C})$ сходятся ряды

1.
$$\exp(A) = E + \frac{A}{1!} + \frac{A^2}{2!} + \dots$$

2.
$$\cos(A) = \sum_{k=0}^{\infty} (-1)^k \frac{A^{2k}}{(2k)!}$$

3.
$$\sin(A) = \sum_{k=0}^{\infty} (-1)^k \frac{A^{2k+1}}{(2k+1)!}$$

1 Линейной отображение евклидовых и эрмитовых пространств

1.1 Определения, примеры

1.1.1 Определения

Конечномерное векторное про-во V над полем $\mathbb{R}(\mathbb{C})$ называется евклидовым (эрмитовым), если на нём задано скалярное про-ие, т.е. функция

$$(x,x): V \times V \to K = \mathbb{R}(\mathbb{C}) \tag{1}$$

со сво-ами:

1. коммутативность:
$$(a,b)= \begin{cases} (b,a), & K=\mathbb{R} \\ \overline{(b,a)}, & K=\mathbb{C} \end{cases}$$

2. аддитивность:
$$(a, b + c) = (a, b) + (a, c)$$

3. однородность:
$$(a, \lambda b) = \lambda(a, b)$$

4. положительность:
$$a \neq 0 \Rightarrow (a, a) > 0 (\in \mathbb{R}.$$

1.1.2 Простейшие следствие

1.
$$(a+b,c) = (a,c) + (b,c)$$

2.
$$(\lambda a, b) = \overline{\lambda}(a, b)$$

3.
$$(\sum_{i} \alpha_{i} a_{i}, \sum_{j} \beta_{j} b_{j}) = \sum_{i} \sum_{j} \overline{\alpha}_{i} \beta_{j} (a_{i}, b_{j})$$